随着大模型进入拼落地、拼应用的下半场,为了让AI技术更加融入千行百业,多模态领域势必会以更快的速度发展革新。
目前来看,多模态的主流构建思路并不是重新训练一个大模型,而是在已经训练好的大语言模型中“嵌入”图像理解、语音识别等技术,也就是通过引入多模态的数据集来攻克跨领域的技术难点。例如,百融云创的产业大模型——BR-LLM便结合了NLP(自然语言处理)、智能语音等技术。
也有一些科技公司尝试基于特定需求直接训练多模态基础模型。但不论采取怎样的方式,毫无疑问大模型生态下半场已经打开。业内人士认为,随着模型能力的增强,AI应用范围将不再局限于单一功能或者单个产品,而是会扩围到更广阔的应用场景。在这样的背景下,能否快速、高效地将技术产品化,料成为决胜未来的关键因素。
此前,为了让AI技术更加深入赋能垂直场景,百融云创优化原有机器学习平台ORCA,将其与生成式AI理念紧密结合,形成的全新产品ORCA-GPT可以利用BR-LLM的代码生成能力,极大地降低模型产品开发部署的周期和成本。
同时,伴随着与多模态发展相关的全新研究方向——“AI for Science”(AI辅助研发)逐渐崭露头角,百融云创率先捕捉到这一趋势,依托BR-LLM基座,于近期推出了一款全新智能代码生成助手——BR-Coder。
“BR-Coder将极大地提升程序员的开发效率,助力商业机构研发提质增效。”百融云创专家称,BR-Coder不仅能生成研发代码,还可以用于自动生成测试用例和单元测试、解答技术问题,在保障企业数据资产安全的同时,提升模型生成代码的一次采用率。展望后续,BR-Coder会进一步增强与编译环境的交互,为开发者提供更为全面和便捷的编程体验。